June
16
2016
MedTech West arrangerar Medtech Week 2016 i Göteborg
Time 12:00-15:15
Location Hjärtats aula, Vita stråket 12, Sahlgrenska universitetssjukhuset

Västsvenska forskare är framstående inom flera områden som är viktiga för patienter, exempelvis teknik som i framtiden kan ge snabbare och träffsäkrare diagnos vid bland annat bröstcancer och stroke, bättre hörapparater och individanpassade implantat. Teknikerna som ligger bakom dessa kallas för mikrovågssystem, benförankrade hörapparater, 3D-printing och bildanalys.

För att uppmärksamma European MedTech Week arrangerar Medtech West ett seminarium där ett urval forskare från Chalmers, Göteborgs Universitet och SP, Sveriges Tekniska Forskningsinstitut, ger en kort presentation av sina spännande forskningsfält. Vi bjuder också på intressanta paneldebatter där vi tillsammans diskuterar frågor som hur vi genom medicinteknikforskningen kan skapa största möjliga värde för patienterna. Du får chans att mingla med och ställa frågor till forskare under både lunch och kaffepaus.

Välkommen till en spännande och lärorik eftermiddag på Sahlgrenska Universitetssjukhuset med fokus på medicinteknisk forskning och patientnytta!

Tid och plats:
Dag: Torsdag den 16 juni 2016
Tid: 12.00-15.15
Plats: Hjärtats aula, Vita stråket 12, Sahlgrenska Universitetssjukhuset
Moderator: Kristina Svensson, Medtech4Health

Program:
12.00-12.30 Den medicintekniska forskningsmiljön
Petrus Laestadius, vice VD på Swedish Medtech, presenterar det europeiska initiativet MedTech Week och samarbetet mellan vården, industrin och akademin ur ett nationellt perspektiv. Därefter kommer Henrik Mindedal från MedTech West och Erik Djäken Mårtensson från Innovationsplattformen, Västra Götalandsregionen, att ge oss en kort överblick över hur miljön för den patientnära medicintekniska forskningen ser ut i regionen idag. Professor Sven Ekholm från Sahlgrenska Akademin och universitetssjukhuset berättar om vilka möjligheter det nya Bild- och Interventionscentrum (BoIC), som i dagarna har tagit emot sina första patienter, innebär.

12.30-13.00 Lunch
Vi bjuder på en enklare lunch med mingelmöjligheter

13.00-13.45 Bättre diagnoser med bildanalys samt utvecklingen av hörapparater
I detta block kommer vi att få veta mer om vad avancerad bildanalys kan användas till. Det handlar bland annat om diagnostisera hjärntumörer och identifiera patienter som är i riskzonen för hjärtinfarkt. Vet du fördelarna är med benförankrade hörapparater? Det kommer du att få reda på samt höra vad som händer på forskningsfronten.
Deltagare: Prof. Rolf Heckemann, Prof. Bo Håkansson, Prof. Fredrik Kahl, Docent Justin Schneiderman

13.45-14.15 Kaffe
Under kaffepausen finns möjlighet att ställa frågor till forskarna

14.15-15.00 Snabbare strokediagnos, ny cancerbehandling och framtidens reservdelar
Tiden från det att man drabbas av stroke till dess man får behandling är oerhört viktig för utgången. Just nu pågår forskning kring att ställa diagnos av stroke redan i ambulansen. Även vid cancer är en tidig diagnos betydelsefull. I detta block får vi höra hur mikrovågsteknik eventuellt kan ersätta mammografi för diagnos av bröstcancer. För den som redan drabbats av cancer kan värmebehandling av tumörer snart vara en ny möjlighet. Vi kommer också att få höra om framtidens reservdelar till våra kroppar, det vill säga implantat. Vad är 3D-printing och hur kan tekniken användas i framtiden?
Deltagare: Dr. Hana Dobsicek Trefna, Docent Andreas Fhager, Dr Joakim Håkansson, Docent Anders Palmquist

15.00-15.15 Avslutning
Värden Henrik Mindedal och moderator Kristina Svensson sammanfattar och avrundar dagen

 Anmäl dig här>>

VÄLKOMMEN!

Plats: Hjärtats aula, Vita stråket 12, Sahlgrenska universitetssjukhuset
Tid: Torsdag den 16 juni 2016, kl. 12.00-15.15

 

Share this:
facebooktwittergoogle_pluspinterestlinkedin
Jun
15
2016
Master thesis presentation by Fredrik Elofsson: “Detection of Coronary Arteries in Contrast-Enhanced 3D CT-Images”
Time 11:00
Location Landahlsrummet (room 7430), Hörsalsvägen 11, 7th floor

On Wednesday 15 June, Fredrik Elofsson, MPCAS, will present his master thesis with the title “Detection of Coronary Arteries in Contrast-Enhanced 3D CT-Images”.

When? 11:00 am. Wednesday, 15 June, 2016
Where? Landahlsrummet (room 7430), Hörsalsvägen 11, 7th floor

Supervisor: Behrooz Nasihatkon
Examiner: Fredrik Kahl

Welcome!

Abstract
Within cardiology, assessing the function of coronary arteries is of vital importance as these arteries supply the heart with oxygenated blood. A method routinely used in this assessment is x-ray computer tomography (CT), where a 3D image of the heart is analyzed by an expert. However, this is a laborious task, and thus it is tempting to automate parts of this process. In this thesis, a coronary artery segmentation method is presented. Consisting of two steps, the origins of the right coronary artery (RCA) and the left anterior descending artery (LAD) are estimated via a feature-based image registration method. Secondly, an incremental shortest-path algorithm is presented to track the vessels.
The segmentation method is evaluated on the public data set of the Rotterdam Coronary Artery Algorithm Evaluation Framework (RCAAEF). Using the training set of the RCAAEF, the average error of estimating the origin of the RCA and LAD is found to be 5 mm. Furthermore, the vessel segmentation is evaluated by tracking the RCA in the training set. The tracking performance is found to be on average 53% in the framework’s standardized overlap measure (0-100%, where “100%” means that the entire segmented vessel is within the radius of the true vessel). The results are worse than that of other methods submitted to the RCAAEF, and potential improvements of the proposed method, such as choice of data cost function and post-processing options, are discussed.

Share this:
facebooktwittergoogle_pluspinterestlinkedin
Jun
17
2016
2nd symposium on bionic limbs & neurorehabilitation
Time 13:00-16:30
Location Room EB (besides EA), floor 4, Horsalsvagen 11, Chalmers

On 17 June the second symposium on bionic limbs and neurorehabilitation is taking place.

When? 13:00-16:30 on 17 June, 2016
Where? Room EB (besides EA), floor 4, Hörsalsvägen 11, Chalmers

Read the program here>> 16-06-17 Bionic Limbs Symposium

Welcome!

Share this:
facebooktwittergoogle_pluspinterestlinkedin
Jun
10
2016
Master thesis presentation: Symptoms Quantication for Parkinson’s Disease by Marieke Wendebourg
Time 10:00
Location Lunnerummet, Chalmers University of Technology

On Friday 10 June, Marieke Wendebourg is presenting her master thesis with the title “Symptoms Quantication for Parkinson’s Disease”.

When? Friday, 10 June, 2016 at 10:00 am.
Where? Lunnerummet 3311, Chalmers
Examinator: Tomas McKelvey
Welcome!

Abstract
Today, Parkinson’s disease is the second most common age related degenerative disorder presenting a complex set of both cognitive and motor symptoms. Medication for the treatment of motor symptoms exists but the development of effective treatment plans without technical aids is tedious. These aids could include sensor systems for the objective evaluation and quanti cation of symptoms in short- and long-term settings for both the clinical and the home environment. Recently, several studies have shown the feasibility of symptom quanti cation with the help of gyroscopes or accelerometers. Utilizing such measurements, this work aims at a comparison of several supervised learning methods in order to find the most suitable model structure and therefore the best modeling approach for the quantification of bradykinesia in Parkinson’s patients using the example of repeated forearm-rotation, which is a routine motion from Parkinson’s test protocols.
The measurement characteristics applied for model development were based on knowledge about the considered movement and motion patterns in Parkinson’s disease as well as on insights provided by the literature on other studies concerning the quanti cation of Parkinson’s symptoms. The considered parametric and non-parametric models were developed for a number of sensor subsets and compared in terms of cross-validated mean squared prediction errors obtained for data not utilized during model development. As expected, it was found that when considering only gyroscopes, those measurements of angular velocities around the axis of the forearm were most relevant to model development.
Additionally, results generally improved when using principal component analysis for dimension reduction prior to model development. The best results were obtained for local regression when applied to only two characteristics of measurements of angular velocities around the forearm.

Share this:
facebooktwittergoogle_pluspinterestlinkedin
Jun
8
2016
Master thesis presentation by Rasmus Åberg and Gabriel Matuszczyk, MPSYS: Smartphone based automatic incident detection algorithm and crash notification system for all terrain vehicle drivers
Time 9:00
Location Lunnerummet (room 3311), Hörsalsvägen 11, 3rd floor

On Wednesday, 8 June Rasmus Åberg and Gabriel Matuszczyk, MPSYS, presents their master thesis with the title “Smartphone based automatic incident detection algorithm and crash notification system for all terrain vehicle drivers”.

When? 9 am. on 8 June, 2016
Where? Lunnerummet (room 3311), Hörsalsvägen 11, 3rd floor
Examiner: Stefan Candefjord

Welcome!

Abstract
All-Terrain Vehicle (ATV) drivers face a different kind of danger than posed by most other means of travel. An ATV is mainly designed to travel forests and unpaved areas. It is a versatile vehicle often only used by one person at a time, meaning if an accident occurs far out in the wilderness help is hard to come by, especially if the driver is incapacitated. As a result of the prevalence of GPS-enabled smartphones, an application for them implementing an accurate Incident Detection Algorithm (IDA) could save even an unconscious driver, via an automatic message to an In Case of Emergency contact (ICE). This thesis investigates the possibility of designing such an application, as well as the feasibility of running it in real time on a smartphone.
Around 55 hours of normal ATV driving motion data is used, with the help of machine learning methods (specifically one class support vector machines (OC-SVM), to create an IDA that can satisfactorily identify several different types of accidents. Motion data was collected containing abnormalities in the form of a test person falling and rolling in several directions, in order to simulate a number of crash scenarios. Together with a cancellation algorithm to reduce false positives, and a decision tree within the IDA, few false alarms are raised while alarms do occur for all incidents simulated in the crash dataset. A design for a smartphone application to enable this automatic alarm is proposed in the form of a flow chart. Investigations of required functionality support the claim that a smartphone is capable of running such an IDA in real time and with low battery consumption. With the limited normal driving dataset, and only simulated crash data, further investigations need to be performed to ensure no overfitting has taken place. The next step in the development would be a test group consisting of regular ATV drivers to evaluate the performance of the IDA in real life situations. It is the authors’ opinion that with additional trials and tweaking of parameters, a well-functioning smartphone application could be released to the public and potentially serve as a life saver, perhaps even for other vehicles, in cases where the driver is otherwise helpless.

Share this:
facebooktwittergoogle_pluspinterestlinkedin
Jun
8
2016
Master thesis presentation : Anna Ragnerius and Frida Widelund presents their master thesis “Extraction of foot strike patterns using a sock with piezoelectric fibres”
Time 10.00
Location Lunnerummet (room 3311), Hörsalsvägen 11, 3rd floor (Chalmers)

On Wednesday 8 June, Frida Widelund and Anna Ragnerius will be presenting their master theses with the title “Extraction of foot strike patterns using a sock with piezoelectric fibres”.

When? 10:00 am, Wednesday 8 June 2016
Where? Lunnerummet (room 3311), Hörsalsvägen 11, 3rd floor, Chalmers
Examiner: Stefan Candefjord

Abstract
Information about a runner’s foot strike pattern is interesting as the foot strike is not only believed to impact the runner’s performance but also the risk of getting running-related injuries. In this thesis a software system for recognition of foot strike patterns has been developed. The system makes use of signals from a sock instrumented with textile piezoelectric sensors in heel and toe. The purpose of the thesis was to develop software for automatic classification of runners as either heel-, mid- or toe-strike and provide information about foot strike patterns based on signals from the instrumented socks.
Data was collected on a treadmill while following a protocol. The protocol included walking and running in different speed with the three strike types; heel-, mid- and toe-strike, resulting in a database with tagged sequences. A pattern recognition method with two decision layers and a segmentation algorithm was developed. The first layer classifies data as activity or no activity based on periodicity, the segmentation algorithm isolates each foot step while the second decision layer is a neural network that classifies foot-strike patterns.
The resulting system succeeds to classify foot strike patterns correctly up to 97.9\%. This shows that it is possible to use the piezoelectric textile sensor to classify a runner’s foot strike pattern, though the system has some limitations. The changing properties of the instrumented sock during use disable logging sessions throughout a full protocol. Therefore, it would be necessary to improve the sock, and possibly the hardware, before conducting software test on a larger test group and continuing the research on other areas of use than running.

Share this:
facebooktwittergoogle_pluspinterestlinkedin
  • Visiting address

    MedTech West
    Röda stråket 10B - "MedTech West house"
    Sahlgrenska University Hospital
    413 45 Göteborg


    Get in Touch

    Henrik Mindedal
    Director of Medtech West
    henrik.mindedal@medtechwest.se

  • Founders




    Detta projekt delfinansieras av Europeiska Unionen.